Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Plant Physiol Biochem ; 208: 108529, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38507837

RESUMEN

Chromium is a serious heavy metal (HM) and its concentration in plant-soil interface is soaring due to anthropogenic activities, unregulated disposals, and lack of efficient treatments. High concentration of Cr is toxic to ecosystems and human health. Cr stress also diminishes the plant performance by changing the plant's vegetative and reproductive development that ultimately affects sustainable crop production. Silicon (Si) is the second-most prevalent element in the crust of the planet, and has demonstrated a remarkable potential to minimize the HM toxicity. Amending soils with Si mitigates adverse effects of Cr by improving plant physiological, biochemical, and molecular functioning and ensuring better Cr immobilization, compartmentation, and co-precipitation. However, there is no comprehensive review on the role of Si to mitigate Cr toxicity in plants. Thus, in this present review; the discussion has been carried on; 1) the source of Cr, 2) underlying mechanisms of Cr uptake by plants, 3) how Si affects the plant functioning to reduce Cr toxicity, 4) how Si can cause immobilization, compartmentation, and co-precipitation 5) strategies to improve Si accumulation in plants to counter Cr toxicity. We also discussed the knowledge gaps and future research needs. The present review reports up-to-date knowledge about the role of Si to mitigate Cr toxicity and it will help to get better crop productivity in Cr-contaminated soils. The findings of the current review will educate the readers on Si functions in reducing Cr toxicity and will offer new ideas to develop Cr tolerance in plants through the use of Si.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Antioxidantes , Cromo/toxicidad , Ecosistema , Metales Pesados/química , Silicio/farmacología , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/química
3.
Artículo en Inglés | MEDLINE | ID: mdl-37552442

RESUMEN

The present study was conducted to investigate the effectiveness of new, less toxic, less harmful, and nonmetallic graphite (G) and metallic iron oxide (Fe2O3) nanofuel additives by analyzing experimentally their consequences on exhaust emissions and performance of an air cooled, single cylinder, 4-stroke gasoline engine. Fe2O3 and graphite nanoparticles at 40, 80, and 120 mg/l of gasoline concentrations were mixed with gasoline by means of a magnetic stirrer. Brake power (BP), brake-specific fuel consumption (BSFC), torque (T), brake thermal efficiency (BTE), nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HC), and carbon dioxide (CO2) emissions were the investigated parameters. Experimental results indicated that G-blends showed a higher rise in brake power, brake thermal efficiency and torque and a greater reduction in the brake-specific fuel consumption as compared to that of Fe2O3 fuel blends. Moreover, the G-blends produced less NOx and CO2 than Fe2O3 blends but produced more emissions of CO and HC than that of Fe2O3 blends. On average, G-blends produced 0.46%, 0.71%, and 1.71% more torque, power, and BTE and 2.43%, 1.87%, and 13.39% less brake-specific fuel consumption (BSFC), NOx, and CO2 than Fe2O3 blends, respectively. So, in terms of the eight parameters, four performance parameters (i.e., T, BP, BSFC, BTE), and four engine emission exhaust indicators (i.e., CO, NOx, HC, CO2), graphite nanoparticles showed more positive results for 6 parameters (T, BP, BSFC, BTE, NOx, CO2), while two parameters HC and CO showed negative results with graphite as compared to that of Fe2O3 nanoparticles. So, overall, we conclude that nanoparticles of graphite are more engine and environment friendly than that of iron oxide fuel additives.

4.
Front Plant Sci ; 13: 976179, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507430

RESUMEN

Drought stress (DS) is a serious challenge for sustaining global crop production and food security. Nanoparticles (NPs) have emerged as an excellent tool to enhance crop production under current rapid climate change and increasing drought intensity. DS negatively affects plant growth, physiological and metabolic processes, and disturbs cellular membranes, nutrient and water uptake, photosynthetic apparatus, and antioxidant activities. The application of NPs protects the membranes, maintains water relationship, and enhances nutrient and water uptake, leading to an appreciable increase in plant growth under DS. NPs protect the photosynthetic apparatus and improve photosynthetic efficiency, accumulation of osmolytes, hormones, and phenolics, antioxidant activities, and gene expression, thus providing better resistance to plants against DS. In this review, we discuss the role of different metal-based NPs to mitigate DS in plants. We also highlighted various research gaps that should be filled in future research studies. This detailed review will be an excellent source of information for future researchers to adopt nanotechnology as an eco-friendly technique to improve drought tolerance.

5.
Front Plant Sci ; 13: 961680, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388543

RESUMEN

The present study investigated the brassinosteroid-induced drought resistance of contrasting drought-responsive maize genotypes at physiological and transcriptomic levels. The brassinosteroid (BR) contents along with different morphology characteristics, viz., plant height (PH), shoot dry weight (SDW), root dry weight (RDW), number of leaves (NL), the specific mass of the fourth leaf, and antioxidant activities, were investigated in two maize lines that differed in their degree of drought tolerance. In response to either control, drought, or brassinosteroid treatments, the KEGG enrichment analysis showed that plant hormonal signal transduction and starch and sucrose metabolism were augmented in both lines. In contrast, the phenylpropanoid biosynthesis was augmented in lines H21L0R1 and 478. Our results demonstrate drought-responsive molecular mechanisms and provide valuable information regarding candidate gene resources for drought improvement in maize crop. The differences observed for BR content among the maize lines were correlated with their degree of drought tolerance, as the highly tolerant genotype showed higher BR content under drought stress.

6.
Front Plant Sci ; 13: 993189, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36226280

RESUMEN

The soybean is a significant legume crop, providing several vital dietary components. Extreme heat stress negatively affects soybean yield and quality, especially at the germination stage. Continuous change in climatic conditions is threatening the global food supply and food security. Therefore, it is a critical need of time to develop heat-tolerant soybean genotypes. Different molecular techniques have been developed to improve heat stress tolerance in soybean, but until now complete genetic mechanism of soybean is not fully understood. Various molecular methods, like quantitative trait loci (QTL) mapping, genetic engineering, transcription factors (TFs), transcriptome, and clustered regularly interspaced short palindromic repeats (CRISPR), are employed to incorporate heat tolerance in soybean under the extreme conditions of heat stress. These molecular techniques have significantly improved heat stress tolerance in soybean. Besides this, we can also use specific classical breeding approaches and different hormones to reduce the harmful consequences of heat waves on soybean. In future, integrated use of these molecular tools would bring significant results in developing heat tolerance in soybean. In the current review, we have presented a detailed overview of the improvement of heat tolerance in soybean and highlighted future prospective. Further studies are required to investigate different genetic factors governing the heat stress response in soybean. This information would be helpful for future studies focusing on improving heat tolerance in soybean.

7.
Bioengineering (Basel) ; 9(10)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36290463

RESUMEN

Abiotic stresses are one of the significant threats to soybean (Glycine max L.) growth and yields worldwide. Soybean has a crucial role in the global food supply chain and food security and contributes the main protein share compared to other crops. Hence, there is a vast scientific saddle on soybean researchers to develop tolerant genotypes to meet the growing need of food for the huge population. A large portion of cultivated land is damaged by salinity stress, and the situation worsens yearly. In past years, many attempts have increased soybean resilience to salinity stress. Different molecular techniques such as quantitative trait loci mapping (QTL), genetic engineering, transcriptome, transcription factor analysis (TFs), CRISPR/Cas9, as well as other conventional methods are used for the breeding of salt-tolerant cultivars of soybean to safeguard its yield under changing environments. These powerful genetic tools ensure sustainable soybean yields, preserving genetic variability for future use. Only a few reports about a detailed overview of soybean salinity tolerance have been published. Therefore, this review focuses on a detailed overview of several molecular techniques for soybean salinity tolerance and draws a future research direction. Thus, the updated review will provide complete guidelines for researchers working on the genetic mechanism of salinity tolerance in soybean.

8.
Front Plant Sci ; 13: 966749, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35968147

RESUMEN

Improvement of salinity tolerance in rice can minimize the stress-induced yield losses. Rice (Oryza sativa) is one of Asia's most widely consumed crops, native to the subtropical regions, and is generally associated with sensitivity to salinity stress episodes. Salt-tolerant rice genotypes have been developed using conventional breeding methods; however, the success ratio is limited because of the complex nature of the trait and the high cost of development. The narrow genetic base of rice limited the success of conventional breeding methods. Hence, it is critical to launch the molecular tools for screening rice novel germplasm for salt-tolerant genes. In this regard, the latest molecular techniques like quantitative trait loci (QTL) mapping, genetic engineering (GE), transcription factors (TFs) analysis, and clustered regularly interspaced short palindromic repeats (CRISPR) are reliable for incorporating the salt tolerance in rice at the molecular level. Large-scale use of these potent genetic approaches leads to identifying and editing several genes/alleles, and QTL/genes are accountable for holding the genetic mechanism of salinity tolerance in rice. Continuous breeding practices resulted in a huge decline in rice genetic diversity, which is a great worry for global food security. However, molecular breeding tools are the only way to conserve genetic diversity by exploring wild germplasm for desired genes in salt tolerance breeding programs. In this review, we have compiled the logical evidences of successful applications of potent molecular tools for boosting salinity tolerance in rice, their limitations, and future prospects. This well-organized information would assist future researchers in understanding the genetic improvement of salinity tolerance in rice.

9.
Mol Biol Rep ; 49(12): 11255-11271, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35802276

RESUMEN

Salt stress is one of the leading threats to crop growth and productivity across the globe. Salt stress induces serious alterations in plant physiological, metabolic, biochemical functioning and it also disturbs antioxidant activities, cellular membranes, photosynthetic performance, nutrient uptake and plant water uptake and resulting in a significant reduction in growth and production. The application of osmoprotectants is considered as an important strategy to induce salt tolerance in plants. Trehalose (Tre) has emerged an excellent osmolyte to induce salinity tolerance and it got considerable attention in recent times. Under salinity stress, Tre helps to maintain the membrane integrity, and improves plant water relations, nutrient uptake and reduces the electrolyte leakage and lipid per-oxidation. Tre also improves gas exchange characteristics, protects the photosynthetic apparatus from salinity induced oxidative damages and brings ultra-structure changes in the plant body to induce salinity tolerance. Moreover, Tre also improves antioxidant activities and expression of stress responsive proteins and genes and confers salt tolerance in plants. Additionally, Tre is also involved in signaling association with signaling molecules and phytohormones and resultantly improved the plant performance under salt stress. Thus, it is interesting to understand the role of Tre in mediating the salinity tolerance in plants. Therefore, in this review we have summarized the different physiological and molecular roles of Tre to induce salt tolerance in plants. Moreover, we have also provided the information on Tre cross-talk with various osmolytes and hormones, and its role in stress responsive genes and antioxidant activities. Lastly, we also shed light on research gaps that need to be addressed in future studies. Therefore, this review will help the scientists to learn more about the Tre in changing climate conditions and it will also provide new insights to insights that could be used to develop salinity tolerance in plants.


Asunto(s)
Antioxidantes , Trehalosa , Trehalosa/farmacología , Antioxidantes/farmacología , Antioxidantes/metabolismo , Estrés Fisiológico/genética , Tolerancia a la Sal/genética , Salinidad , Agua/metabolismo
10.
Front Plant Sci ; 13: 911610, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845651

RESUMEN

Ramie is one of the most significant fiber crops and contributes to good quality fiber. Drought stress (DS) is one of the most devastating abiotic factors which is accountable for a substantial loss in crop growth and production and disturbing sustainable crop production. DS impairs growth, plant water relation, and nutrient uptake. Ramie has evolved a series of defense responses to cope with DS. There are numerous genes regulating the drought tolerance (DT) mechanism in ramie. The morphological and physiological mechanism of DT is well-studied; however, modified methods would be more effective. The use of novel genome editing tools like clustered regularly interspaced short palindromic repeats (CRISPR) is being used to edit the recessive genes in crops to modify their function. The transgenic approaches are used to develop several drought-tolerant varieties in ramie, and further identification of tolerant genes is needed for an effective breeding plan. Quantitative trait loci (QTLs) mapping, transcription factors (TFs) and speed breeding are highly studied techniques, and these would lead to the development of drought-resilient ramie cultivars. The use of hormones in enhancing crop growth and development under water scarcity circumstances is critical; however, using different concentrations and testing genotypes in changing environments would be helpful to sort the tolerant genotypes. Since plants use various ways to counter DS, investigating mechanisms of DT in plants will lead to improved DT in ramie. This critical review summarized the recent advancements on DT in ramie using novel molecular techniques. This information would help ramie breeders to conduct research studies and develop drought tolerant ramie cultivars.

11.
Mol Biol Rep ; 49(6): 5595-5609, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35585381

RESUMEN

Legumes are an imperative source of food and proteins across the globe. They also improve soil fertility through symbiotic nitrogen fixation (SNF). Genome editing (GE) is now a novel way of developing desirable traits in legume crops. Genome editing tools like clustered regularly interspaced short palindromic repeats (CRISPR) system permits a defined genome alteration to improve crop performance. This genome editing tool is reliable, cost-effective, and versatile, and it has to deepen in terms of use compared to other tools. Recently, many novel variations have drawn the attention of plant geneticists, and efforts are being made to develop trans-gene-free cultivars for ensuring biosafety measures. This review critically elaborates on the recent development in genome editing of major legumes crops. We hope this updated review will provide essential informations for the researchers working on legumes genome editing. In general, the CRISPR/Cas9 novel GE technique can be integrated with other techniques like omics approaches and next-generation tools to broaden the range of gene editing and develop any desired legumes traits. Regulatory ethics of CRISPR/Cas9 are also discussed.


Asunto(s)
Fabaceae , Edición Génica , Sistemas CRISPR-Cas/genética , Productos Agrícolas/genética , Fabaceae/genética , Edición Génica/métodos , Genoma de Planta/genética , Verduras/genética
12.
Life (Basel) ; 12(3)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35330190

RESUMEN

The concentration of greenhouse gases (GHGs) in the atmosphere has been increasing since the beginning of the industrial revolution. Nitrous oxide (N2O) is one of the mightiest GHGs, and agriculture is one of the main sources of N2O emissions. In this paper, we reviewed the mechanisms triggering N2O emissions and the role of agricultural practices in their mitigation. The amount of N2O produced from the soil through the combined processes of nitrification and denitrification is profoundly influenced by temperature, moisture, carbon, nitrogen and oxygen contents. These factors can be manipulated to a significant extent through field management practices, influencing N2O emission. The relationships between N2O occurrence and factors regulating it are an important premise for devising mitigation strategies. Here, we evaluated various options in the literature and found that N2O emissions can be effectively reduced by intervening on time and through the method of N supply (30-40%, with peaks up to 80%), tillage and irrigation practices (both in non-univocal way), use of amendments, such as biochar and lime (up to 80%), use of slow-release fertilizers and/or nitrification inhibitors (up to 50%), plant treatment with arbuscular mycorrhizal fungi (up to 75%), appropriate crop rotations and schemes (up to 50%), and integrated nutrient management (in a non-univocal way). In conclusion, acting on N supply (fertilizer type, dose, time, method, etc.) is the most straightforward way to achieve significant N2O reductions without compromising crop yields. However, tuning the rest of crop management (tillage, irrigation, rotation, etc.) to principles of good agricultural practices is also advisable, as it can fetch significant N2O abatement vs. the risk of unexpected rise, which can be incurred by unwary management.

13.
Genes (Basel) ; 14(1)2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36672772

RESUMEN

Drought stress is a significant abiotic factor influencing maize growth and development. Understanding the molecular mechanism of drought tolerance is critical to develop the drought tolerant genotype. The identification of the stress responsive gene is the first step to developing a drought tolerant genotype. The aim of the current research was to pinpoint the genes that are essential for conserved samples in maize drought tolerance. In the current study, inbred lines of maize, 478 and H21, a drought-tolerant and susceptible line, were cultivated in the field and various treatments were applied. The circumstances during the vegetative stage (severe drought, moderate drought and well-watered environments) and RNA sequencing were used to look into their origins. In 478, 68%, 48% and 32% of drought-responsive genes (DRGs) were found, with 63% of DRGs in moderate drought and severe drought conditions in H21, respectively. Gene ontology (GO) keywords were explicitly enriched in the DRGs of H21, which were considerably over-represented in the two lines. According to the results of the GSEA, "phenylpropanoid biosynthesis" was exclusively enriched in H21, but "starch and sucrose metabolism" and "plant hormone signal transduction" were enhanced in both of the two lines. Further investigation found that the various expression patterns of genes linked to the trehalose biosynthesis pathway, reactive oxygen scavenging, and transcription factors, may have a role in maize's ability to withstand drought. Our findings illuminate the molecular ways that respond to lack and offer gene resources for maize drought resistance. Similarly, SNP and correlation analysis gave us noticeable results that urged us to do the same kind of analysis on other crops. Additionally, we isolated particular transcription factors that could control the expression of genes associated to photosynthesis and leaf senescence. According to our findings, a key factor in tolerance is the equilibrium between the induction of leaf senescence and the preservation of photosynthesis under drought.


Asunto(s)
Resistencia a la Sequía , Zea mays , Zea mays/genética , Zea mays/metabolismo , Genotipo , Factores de Transcripción/genética , Sequías
14.
Mol Breed ; 42(6): 31, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37312964

RESUMEN

Biotic and abiotic stresses are the main constrain of potato (Solanum tuberosum L.) production all over the world. To overcome these hurdles, many techniques and mechanisms have been used for increasing food demand for increasing population. One of such mechanism is mitogen-activated protein kinase (MAPK) cascade, which is significance regulators of MAPK pathway under various biotic and abiotic stress conditions in plants. However, the acute role in potato for various biotic and abiotic resistance is not fully understood. In eukaryotes including plants, MAPK transfer information from sensors to responses. In potato, biotic and abiotic stresses, as well as a range of developmental responses including differentiation, proliferation, and cell death in plants, MAPK plays an essential role in transduction of diverse extracellular stimuli. Different biotic and abiotic stress stimuli such as pathogen (bacteria, virus, and fungi, etc.) infections, drought, high and low temperatures, high salinity, and high or low osmolarity are induced by several MAPK cascade and MAPK gene families in potato crop. The MAPK cascade is synchronized by numerous mechanisms, including not only transcriptional regulation but also through posttranscriptional regulation such as protein-protein interactions. In this review, we will discuss the recent detailed functional analysis of certain specific MAPK gene families which are involved in resistance to various biotic and abiotic stresses in potato. This study will also provide new insights into functional analysis of various MAPK gene families in biotic and abiotic stress response as well as its possible mechanism.

15.
Front Plant Sci ; 13: 1085368, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36643298

RESUMEN

Abiotic stresses and climate changes cause severe loss of yield and quality of crops and reduce the production area worldwide. Flooding stress curtails soybean growth, yield, and quality and ultimately threatens the global food supply chain. Flooding tolerance is a multigenic trait. Tremendous research in molecular breeding explored the potential genomic regions governing flood tolerance in soybean. The most robust way to develop flooding tolerance in soybean is by using molecular methods, including quantitative trait loci (QTL) mapping, identification of transcriptomes, transcription factor analysis, CRISPR/Cas9, and to some extent, genome-wide association studies (GWAS), and multi-omics techniques. These powerful molecular tools have deepened our knowledge about the molecular mechanism of flooding stress tolerance. Besides all this, using conventional breeding methods (hybridization, introduction, and backcrossing) and other agronomic practices is also helpful in combating the rising flooding threats to the soybean crop. The current review aims to summarize recent advancements in breeding flood-tolerant soybean, mainly by using molecular and conventional tools and their prospects. This updated picture will be a treasure trove for future researchers to comprehend the foundation of flooding tolerance in soybean and cover the given research gaps to develop tolerant soybean cultivars able to sustain growth under extreme climatic changes.

16.
Front Genet ; 13: 1030309, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685955

RESUMEN

Tomato is one of the most significant vegetable crops, which provides several important dietary components. Pakistan has a significant low tomato yield compared to other countries because of low genetic diversity and the absence of improved cultivars. The present study aimed to investigate the genetic variability, heritability, and genetic advance for yield and yield-related traits in tomato. For this purpose, eight tomato parents and their 15 crosses or hybrids were evaluated to study the relevant traits. Significant variation was observed for all studied traits. Higher values of the genotypic coefficient of variability (GCV) and phenotypic coefficient of variability (PCV) were recorded for yield per plant (YP) (kg) (37.62% and 37.79%), as well as the number of fruits per cluster (NFRC) (31.52% and 31.71%), number of flowers per cluster (24.63 and 24.67), and single fruit weight (g) (23.49 and 23.53), which indicated that the selection for these traits would be fruitful. Higher heritability (h2) estimates were observed for the number of flowers per cluster (NFC) (0.99%), single fruit weight (SFW) (g) (0.99%), and yield per plant (YP) (kg) (0.99%). Single fruit weight (SFW) (g) exhibited higher values for all components of variability. High genetic advance as a % of the mean (GAM) coupled with higher heritability (h2) was noted for the yield per plant (YP) (kg) (52.58%) and the number of fruits per cluster (NFRC) (43.91). NFRC and SFW (g) had a highly significant correlation with YP (kg), while FSPC had a significant positive association with YP (kg), and these traits can be selected to enhance YP (kg). Among the 15 hybrids, Nagina × Continental, Pakit × Continental, and Roma × BSX-935 were selected as high-yielding hybrids for further evaluation and analysis. These findings revealed that the best performing hybrids could be used to enhance seed production and to develop high-yielding varieties. The parents could be further tested to develop hybrids suitable for changing climatic conditions. The selection of YP (kg), SFW (g), NFC, and NFRC would be ideal for selecting the best hybrids.

17.
Curr Issues Mol Biol ; 43(3): 1950-1976, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34889892

RESUMEN

Genome editing (GE) has revolutionized the biological sciences by creating a novel approach for manipulating the genomes of living organisms. Many tools have been developed in recent years to enable the editing of complex genomes. Therefore, a reliable and rapid approach for increasing yield and tolerance to various environmental stresses is necessary to sustain agricultural crop production for global food security. This critical review elaborates the GE tools used for crop improvement. These tools include mega-nucleases (MNs), such as zinc-finger nucleases (ZFNs), and transcriptional activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR). Specifically, this review addresses the latest advancements in the role of CRISPR/Cas9 for genome manipulation for major crop improvement, including yield and quality development of biotic stress- and abiotic stress-tolerant crops. Implementation of this technique will lead to the production of non-transgene crops with preferred characteristics that can result in enhanced yield capacity under various environmental stresses. The CRISPR/Cas9 technique can be combined with current and potential breeding methods (e.g., speed breeding and omics-assisted breeding) to enhance agricultural productivity to ensure food security. We have also discussed the challenges and limitations of CRISPR/Cas9. This information will be useful to plant breeders and researchers in the thorough investigation of the use of CRISPR/Cas9 to boost crops by targeting the gene of interest.


Asunto(s)
Sistemas CRISPR-Cas , Productos Agrícolas/genética , Edición Génica , Fitomejoramiento , Resistencia a la Enfermedad/genética , Calidad de los Alimentos , Abastecimiento de Alimentos , Ingeniería Genética , Genoma de Planta , Genómica/métodos , Plantas Modificadas Genéticamente
18.
Physiol Mol Biol Plants ; 26(9): 1897-1910, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32939107

RESUMEN

Phosphorus (P) is one of the essential macronutrients for rice. In this study, we used 120 rice backcross recombinant inbred lines (BRILs) derived from a cross indica cv. Changhui 891 and japonica cv. 02428. To elucidate the genetic control of P deficiency tolerance in rice, we have used high quality SNPs bin markers to identify some important loci underlying phosphorus deficiency. The bin map was generated which includes 3057 bins covering distance of 1266.5 cM with an average of 0.41 cM between markers. Based on this map, 50 loci, including four novel loci, qSL-3, qRL-11, qSDW-1, qRDW-1 with phenotypic variance 23.26%, 12.06%, 9.89% associated with P deficiency-related seedling traits were identified. No significant QTLs was found for root length under P+, shoot fresh weight P- and root length, shoot fresh weight for P+, P- and their ratio respectively. Root fresh weight, and root dry weight were strongly correlated to each other, and QTLs for these variables were located on the same chromosome 1 at the same region. Notably, 3 pleiotropic regions is the pioneer of our study, and these regions would facilitate map-based cloning to expedite the MAS selection for developing low phosphorous tolerant varieties. This study not only improves our knowledge about molecular processes associated with P deficiency, but also provides useful information to understand the genetic architecture of low phosphorous tolerance.

19.
J Adv Res ; 24: 447-461, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32577311

RESUMEN

Drought seriously curtails growth, physiology and productivity in rapeseed (Brassica napus). Although drought tolerance is a complex trait, efficient phenotyping and genotyping has led to the identification of novel marker-trait associations underlying drought tolerance. A diverse panel of 228 Brassica accessions was phenotyped under normal (without stress) and water-stress conditions, simulated by polyethylene glycol (PEG-6000) (15% PEG stress) at the seedling stage; stress tolerance index (STI) and stress susceptibility index (SSI) values were acquired. Genome-wide association studies (GWAS) using 201 817 high quality SNPs identified 314 marker-trait associations strongly linked with drought indices and distributed across all nineteen chromosomes in both the A and C genomes. None of these quantitative trait loci (QTL) had been previously identified by other studies. We identified 85 genes underlying these QTL (most within 100 kb of associated SNPs) which were orthologous to Arabidopsis genes known to be associated with drought tolerance. Our study provides a novel resource for breeding drought-tolerant Brassica crops.

20.
J Environ Manage ; 255: 109891, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32063300

RESUMEN

Nitrous oxide (N2O) is a pervasive greenhouse gas, and soil management practices greatly affect its release into the atmosphere. Soil pH management (particularly increasing the pH) using biochar can seriously affect soil N2O emissions. The current incubation experiment was conducted to explore the response of N2O emissions from acidic soils using various doses of biochar. Soil with a pH of 5.48 was treated with rice straw biochar at different doses (0%, 1% and 2%) and incubated with 60% water-filled pore spaces (WFPS). The experiment was conducted in a completely randomized design (CRD) with three replications. The soil N2O emissions, pH, NH4+-N, NO3--N, microbial biomass carbon (MBC), and nosZ and nirK gene abundance were determined at various intervals throughout the study. The biochar application (2%) increased the soil pH (from 5.48 to 6.11), triggered the transformation of nitrogen, and augmented the abundance of nosZ and nirK genes. Higher magnitudes of cumulative soil N2O emissions (48.60 µg kg-1) were noted in the control (no biochar) compared to 1% (28.10 µg kg-1) and 2% (14.50 µg kg-1) biochar application. The 2% biochar application more effectively decreased the soil N2O emissions, mainly because of the increased nosZ and nirK gene abundance at higher soil pH levels. The findings suggest that the amelioration of acidic soil with rice straw biochar can considerably control soil N2O emissions by elevating the soil pH and the abundance of nosZ and nirK genes.


Asunto(s)
Microbiología del Suelo , Suelo , Carbón Orgánico , Concentración de Iones de Hidrógeno , Óxido Nitroso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...